Insights about Data Products

Data products are one inevitable result and culmination of the information age. With enough information to process, and with enough data to build massively validated mathematical models like never before, the natural urge is to take a shot at solving some of the world’s problems that depend on data.

Data Product Maturity

There are some fundamental problems all data products aim to address:

  1. Large scale mathematical model building was not possible before. In today’s world of Hadoop and R/Python/Scala, you can build a very specific kind of hypothesis and test it using data collected on a massive scale
  2. Large scale validation of an idea was not possible before. Taking a step back from the hypothesis itself, the presence of big data technologies and the ability to test hypotheses of various kinds ultimately helps validate ideas
  3. Data asymmetry problems can be addressed on a scale never seen before. Taking yet another step back from the ability to validate diverse ideas, the presence of such technologies and models allows us to put power in the hands of decision makers like never before, by arming them with data.

dataproduct_maturity

Being Data Driven: Enabling Higher Level Abstractions of Work

Cultivating a data-driven mindset is hard. I have blogged about this before. But when the standard process workflows (think Plan-Do-Check-Act and Deming) are augmented by analytics, it is amazing what happens to “regular work”. The need to collect, sort and analyze data in a tireless, diligently consistent and unbiased fashion gets delegated to a machine. The human being in organization is not staffed with the mundane activities of data collection and management. Their powers are put to use by leveraging higher reasoning faculties – to do the data analysis that results in insight, and to interpret and review the strategic outcomes. The higher levels of abstraction of work that data products enable help organizations and teams mature.

And this is the primary value addition that a lot of data products seem to bring. The tasks that humans are either too creative for (or too easily bored because of) get automated, and in the process, the advantages of massive data collection and machine learning are leveraged, to bring about a decision making experience that truly eclipses prior generations of managers in the ability and speed to get through complex decisions fast.

Data Product Opportunities

Data products will become a driving force for industrializing the third world nations, and may become a key element of the business strategy of the largest of the large corporations. The levels of uncertainty in business today echo the quality of tools available, and the leverage that this brings. The open source movement has accelerated product development teams in areas such as web development, search technologies, and made the internet the de-facto medium of information for a lot of youngsters. Naturally, these youngsters will warm up faster than the previous generations about the data products available to them. Data products could improve the lives of millions, by enabling the access economy.

dataproduct_opportunities

While the action is generally in the upper right quadrant here, with companies fighting it out for more subscribers and catering to modern segments of industry that are more receptive to ideas, the silent analytics revolution may actually happen in brick and mortar companies that have fewer subscribers and have a more traditional mindset or in a more traditional business. Wherever possible, companies are delivering value by digitization, but a number of services cannot be so digitized, and here is another enabling opportunity. The data products in this space may not attempt to replace the human, or replace the traditional value proposition. Instead, they can function in much the same way IoT is disrupting enterprises. Embedded systems and technologies are definitely one aspect of the silent analytics revolution in the bottom left quadrant, which may have large market fragmentation and entrenched business models that haven’t moved on from decades or centuries old ideas.