Data scientists come in many shapes and sizes, and constitute a diverse lot of people. More importantly, they can perform diverse functions in organizations and still stand to qualify under the same criteria we use to define data scientists.
In this cross-post from a Quora answer, I wish to elucidate on the different kinds of data scientist roles I believe exist in industry. Here is the original question on Quora. I have to say here, that I found Michael Koelbl’s answer to What are all the different types of data scientists? quite interesting, and thinking along similar lines, I decided to delineate the following stereotypical kinds of data science people:
- Business analysts with a data focus: These are essentially business analysts that understand a specific business domain reasonably well, although they’re not statistically or analytically inclined. Focused on exploratory data analysis, reporting based on creation of new measures, graphs and charts based on them, and asking questions around these EDA. They’re excellent at story telling, asking questions based on data, and pushing their teams in interesting directions.
- Machine learning engineers: Essentially software developers with a one-size-fits-all approach to data analysis, where they’re trying to build ML models of one or other kind, based on the data. They’re not statistically savvy, but understand ML engineering, model development, software architecture and model deployment.
- Domain expert data scientists: They’re essentially experts in a specific domain, interested in generating the right features from the data to answer questions in the domain. While not skilled as statisticians or machine learning engineers, they’re very keyed in on what’s required to answer questions in their specific domains.
- Data visualization specialists: These are data scientists focused on developing visualizations and graphs from data. Some may be statistically savvy, but their focus is on data visualization. They span the range from BI tools to coded up scripts and programs for data analysis
- Statisticians: Let’s not forget the old epithets assigned to data scientists (and the jokes around data science and statisticians). Perhaps statisticians are the rarest breed of the current data science talent pool, despite the need for them being higher than ever. They’re generally savvy analysts who can build models of various kinds – from distribution models, to significance testing, factor-response models and DOE, to machine learning and deep learning. They’re not normally known to handle the large data sets we often see in data science work, though.
- Data engineers with data analysis skills: Data engineers can be considered “cousins” of data scientists that are more focused on building data management systems, pipelines for implementation of models, and the data management infrastructure. They’re concerned with data ingestion, extraction, data lakes, and such aspects of the infrastructure, but not so much about the data analysis itself. While they understand use cases and the process of generating reports and statistics, they’re not necessarily savvy analysts themselves.
- Data science managers: These are experienced data analysts and/or data engineers that are interested in the deployment and use of data science results. They could also be functional or strategic managers in companies, who are interested in putting together processes, systems and tools to enable their data scientists, analysts and engineers, to be effective.
So, do you think I’ve covered all the kinds of data scientists you know? Do you think I missed anything? Let me know in the comments.
Related links