Contextualizing “AI Alarmism” in Business Process Automation

Alarmist speculations about Artificial Intelligence are everywhere these days. Business managers in labour-intensive markets such as India and China have, in recent months, come to fear data-driven process automation, often unfairly and unnecessarily. In this post, I wish to discuss some of the AI alarmism we see in the general public at large – ranging from well-founded speculation to the truly ridiculous. I will also present two mental models that may illustrate the usefulness of AI in process automation, before we arrive at how to contextualize AI-based automation.

Some Contours of AI Alarmism

In the last several months, the media has been awash with articles about data-driven process automation made possible by artificial intelligence, that is said to be doing any of the following things (listed in order of increasing speculation craziness):

  1. Taking away our jobs and rendering vast sections of human society jobless
  2. Doing things that humans do better than humans do them, and thereby obviate the need for humans in certain very human activities
  3. As a panacea for all kinds of faults and frailties that make us human, and therefore a representation of the post-human world
  4. Killer robots that will wrest power from all of human society, thereby resulting in the standard-issue-technology-apocalypse that is the staple of Hollywood movies

It is important to assess the sources of these fears and speculations, if only to debunk some of this AI alarmism. It is also important to understand true challenges where they may exists and the threats in that context.

A Process View of AI-driven Automation

In the past several decades, we have seen numerous technology revolutions and their socio-cultural impact on human society. Whether the rise of computerised and robotic manufacturing processes, that led to the digitization of manufacturing, or the evolution of automation methods in the knowledge work space we’ve seen in the last decade or so, the fundamental drivers have been two fold – improved process performance, and increased process flexibility:

  1. A better process for delivering value
    1. Improved process quality and reduced variation
    2. Reduced process time and opportunities to continually improve
    3. Reduced process cost and opportunities to spread value within processes
  2. A more scalable and predictable process for delivering value

Given this broader process-based view of excellence for organizations and how managers look to new technology from an operational effectiveness standpoint, can we see automation driven by artificial intelligence in a new light?  For instance: how can we understand what AI specifically offers to the process automation ambit, and what this means for businesses? To understand this, let’s take a look at what AI solutions currently allow businesses to do:

  1. Automate embarrassingly simple processes in business processes that have true scale, that are based on well-defined rules, but which are subject to variation – and do so cost-effectively
  2. Automate somewhat complex processes which require some human intervention, but which are not mission-critical, and do so in businesses processes that have true scale

Now, let’s look at what AI based automation is not capable of accomplishing in its current state:

  1. Truly domain aware decision making, as an expert system that is aware of business context, and which can make holistic recommendations only possible by highly skilled experts
  2. Truly complex decision making that considers multiple factors in a non-formulaic or dynamic manner
  3. Tasks of moderate to high complexity to be performed in a business environment where the scale of the business isn’t large
Automation value add at scale

Automation and its effectiveness with business scale

Automation value add with complexity

Automation and its effectiveness with changing process complexity

As you can see above, cost-effective process automation is held back by the business case of it and its applicability at different business scales. This leads to an interesting cost-benefit value analysis. AI based process automation in businesses is most effective when there is true business scale, when the processes in question are either simple, or moderately complex.

Data and AI-Based Automation

There is yet another factor that could potentially affect how effective automation might be – and this is the availability of data from processes. The importance of data can be characterised in some key ways:

  1. A core enabler for artificially intelligent systems and applications is learning from data. Being able to learn from data implies that there is a need to use statistical techniques. This implies machine learning, statistical inference, time series modeling of data in real time, etc.
  2. Building domain-specific context and awareness within the application implies needing to use knowledge models, which are representations of the system’s domain, in the form of entities and relationships.
  3. A key consideration for an intelligent system is not only being able to learn from data in the domain, but also the ability to act on the domain. These domain actions can take many forms – from the machining and welding processes we see in robotic manufacturing systems, to computer programs that can generate instructions for writing other programs or instructions in data-intensive systems.
  4. A subset or enabling capability in this context, therefore, is the ability to collect and manage data of various kinds in scalable ways, and in real time.

Reasons for Alarmist Speculation

Given these mental models of process-centric and data-centric views of AI-driven automation, let’s take a step back, and look what what is fueling this speculation:

  1. Misunderstanding about what artificial intelligence is and what capabilities it entails, on the business process side or on the data analysis side
  2. The lack of an objective scale for measuring or understanding AI progress
  3. Oversimplification of even simple, old and established human-in-loop systems
  4. Gross oversimplification of complex, human-engineered, industrial systems
  5. Mass media speculation that rides on the latest and greatest technologies, and importantly,
  6. The unceasing tendency of tech reporters and media to both liken the future to science fiction, and to jump to visions of utterly glorious or utterly ghastly futures, rather than evaluating technologies and their impact realistically

Concluding Remarks: Contextualizing AI-based Automation

First off, it is important to recognize that not all AI-centric speculation is unfounded. I wish to call out not those who have legitimately raised alarms about the policies, economics or ethics implications surrounding AI-based process automation, but those who stretch the speculation to the realm of fantasy. It is near-impossible to replace humans for certain kinds of tasks, such as those explained above that are comprised of high complexity, and that are mission critical for businesses. It is also important to consider the true scale and business realities of enterprises when speculating on AI. To this end, we may have to ask questions around whether and how a firm may use AI, and whether they have a sufficiently strong business case. Not only should speculators, consultants and pundits use such thumb rules, but it behooves business leaders and managers to similarly understand their own businesses.

Further Reading

  1. “Impact of emerging technologies on employment and public policy”, by Darrell M. West, Brookings Institution (link)
  2. “How humans respond to robots: building public policy through good design”, by Heather Knight, Brookings Institution (link)
  3. “It is time to dispel the myths of automation”, Viktor Weber, on the World Economic Forum website (link)

Key Data and AI trends in 2017

This year, 2017, has been quite a busy year for artificial intelligence and data science professionals. In some ways, this is the year when AI truly began to be debated and discussed, from frameworks and technologies to ethics and morality. This is the year when opportunities for AI-driven improvement in businesses began to be examined critically by diverse industry professionals and academicians.With good reason, machine learning and deep learning came to be placed at the top of the Garner’s hype cycle. We’re really at the peak of inflated expectations when it comes to ML/DL – with opportunities to shorten the time we take to reach measurable and direct consumer value.

Image result for gartner hype cycle 2017

Gartner Hype Cycle for 2017

Overall, in my experience, three key trends that enterprises welcomed in 2017 include:

  1. Simplification of cloud and data infrastructure services
  2. Improved and democratized scalable machine learning and deep learning
  3. Automation in key AI, ML and data analysis tasks

Improving Cloud and Data Infrastructure

Perhaps the foundational enabler for the data strategy of many enterprises that I have seen and worked with in 2017, is the availability of an easily operated and managed scalable cloud infrastructure. This promise of a high performance, low cost and (arbitrarily) scalable cloud infrastructure was made as early as 2014, but has taken a few years to materialize as a truly viable, business-wise feasible commercial offering from a stable, top-tier technology firm. Prominent cloud vendors such as Google Cloud, Microsoft Azure and Amazon’s AWS have upped the ante, while veterans like Hortonworks, Cloudera continue to hold sway. This space where the cloud vendors are competing is ripe for consolidation, in my view, although we can expect to see converging architectures before viable consolidation that isn’t entirely wasteful can happen.

Other notable developments on the cloud infrastructure side of things were ideas such as serverless compute (which enterprises are definitely warming up to – and it shows, in the Gartner Hype Cycle), production-ready pre-built models for common tasks as APIs (a trend that continues to inspire software/AI application architecture) and the performing of streaming and real-time data processing frameworks. By combining these capabilities in cloud platforms, cloud providers have really upped their offerings in 2017 compared to before, and provide formidable capabilities – which in my view haven’t even been explored as much as they should have been by businesses.

Despite the availability of such production-ready, cost-effective and scalable data management systems in the cloud, cloud infrastructure has nevertheless come under scrutiny in 2017 for massive security lapses and downtime. To speak of specific examples, we had the biggest impact events in cloud reliability and data security history between Equifax data breach and the massive AWS outage, to say nothing of the numerous data security episodes of smaller scale that were attributable to hacktivism, such as the Panama Papers.

As a counter to some of these incidents and the rise of the GDPR and other data protection regulations, numerous cloud providers have been offering “private cloud” solutions, along with region-specific hosting options for banks and other organizations that deal with regulation-sensitive data.

Additonally, it would be unfair to not point out how much containerization has helped cloud providers in 2017. Massive scale adoption of containerization using Docker and Kubernetes has enabled virtual environments to be set up and managed for complex development and deployment tasks that are data intensive.

Spark and Tensorflow

The space of scalable machine learning frameworks continues to be dominated by Apache Spark – which has found many friends among data engineers and scientists in production after the 2.0 release, especially, given its equitable performance for the data frame APIs across languages. So, whether you program in Python, R, or Scala, you can be assured of the same high performance from Spark these days. Spark ML has expanded on the capabilities of Spark ML Lib, and in its recent releases, Spark has also polished and unified the interfaces for streaming data analysis on Spark-Streaming and graph analysis via GraphX. As someone who has seen teams use Spark for different purposes and built frameworks on it in 2017, the differences between versions 1.6 and below, and 2.0 and above are significant, and the newer versions are more polished and consistent in their behaviour.

Tensorflow received a lot of hype but only lackluster adoption in late 2016 and early 2017, but over the last several months, has made a strong case for itself, and adoption has grown significantly. As developers have warmed up to the framework, and as more language interfaces have been developed for Tensorflow, its popularity has soared, especially in the latter half of 2017. Another factor in the development and adoption of Tensorflow is the widespread use of GPU based deep learning. The core Tensorflow development team’s additions to 1.0 (as explained by Jeff Dean here) have made it a mature deep learning development package and perhaps the most widely used and sought after deep learning framework. While Torch makes an impression and is widely loved (especially in its PyTorch form), Tensorflow is hard to beat for the speed and dynamism of its high quality open source contributors. At Strata Singapore 2016, I sat through a tutorial on Tensorflow 0.8, and what I saw then contrasts with what I see in versions 1.0 and higher. My recent brushes with Tensorflow have made me more convinced that this is the framework to learn for deep learning developers at the moment. The presence of wrappers and higher level interfaces, such as Keras or Caffe, has made Tensorflow very easy to use for entry-level and intermediate programmers and data scientists.

Automation in ML, DL and Data Science

Without a doubt, the development of automation-centric techniques to automate parts of ML and DL development is one of the biggest and most important directions within the field of Artificial Intelligence in 2017. Taking after Leo Brieman’s random forests (an ensemble of “weak learners” resulting in a machine learning model with high performance) and various advancements in deep learning and machine vision (especially convolutional neural networks, which essentially encode complex features using simpler features in computer vision problems), hyper parameter optimization automation was probably the first step in the general direction of automated machine learning.

Frameworks like AutoML (see the talk by Andreas Mueller above) have been the cynosure of this kind of research, and companies small and large have begun attempting different approaches for solving the context modeling problem that arise from the need to automate data science. While most approaches towards machine learning have taken a classical approach, by finding computational approaches to learn more and more from data, some have take non-traditional approaches, by combining ideas from expert systems, rule based inference engines, and other approaches. A novel approach to machine learning has been the invention and development of generative adversarial networks (GANs) which could lead to hitherto unseen improvements in the use of computationally generated data as a starting point for understanding the best representations of a given dataset. Despite being invented in 2014, it is in 2017 that implementations of this kind of network became popular and came to be considered as a viable neural network architecture for computer vision and other kinds of machine learning problems.

Other noteworthy trends within the data and AI space include the rise and improved performance of chat bots and conversational natural-language enabled APIs, the amazing improvements to translation and image tagging made possible by deep learning, and the important question of AI ethics – starting from that now-famous question of “should your self-driving car kill a pedestrian in order to save your life”, to ethical conundrums and alarmist remarks from tech luminaries such as Elon Musk.

Concluding Remarks

So, what does 2018 hold in store? That seems to be the question on everyone’s lips in the data and AI world, and it is also what data and AI enthusiasts in different industry roles are looking to understand. While it is not possible to clearly say which trend will dictate progress in 2018 and beyond, it is clear that the above three developments will form key cornerstones on top of which future capabilities for AI and enterprise scale data management and data science will be built. Hope you enjoyed reading this. Do leave a comment or a note if you would like to share more.

Pervasive Trends in Big Data and Data Science

As of mid-2017, I’ve spent almost two years in the big data analytics and data science world, coming from 13 years of diverse work experience in engineering and management prior. Starting from a professional curiosity, it has taken me a while to develop some data science and engineering skills and hone key skills among these as a data scientist. Along the way, I’ve had a chance to learn core software development methods and principles, stay in touch with the latest in the field, challenge my existing knowledge of product development methodologies and processes, and learn more about data analysis, statistics and machine learning than I started out with in 2015. Along with the constant learning, I’ve had a chance to observe a few pervasive trends in the big data and analytics worlds, which I wish to share here.

  1. Cloud infrastructure penetration: Undoubtedly the biggest beneficiaries of the data and analytics revolution have been cloud service providers. They’re also stretched thin, with reducing costs, massive competition, and the need for value added services of various kinds (big compute and API support, along with big storage, for instance) to be available alongside the core cloud offerings that companies are lapping up, for their data management needs. Security concerns continue to exist, and one of the biggest security issues was actually from the US’ leading cloud service provider, Amazon Web Services. Despite this, many industries, even those that consider data security paramount, wish to adopt cloud infrastructures, because of the reduced cost of operation and the scalability inherent in cloud platforms.
  2. Deep learning adoption: Generalized learning algorithms based on neural networks have taken the machine learning world by storm, and given the proliferation of big compute and big data storage platforms, it has become easier to train deep learning algorithms than in the past. Extant frameworks continue to give better, more user-friendly algorithms as they evolve, and there’s definitely a more user-friendly ecosystem of frameworks and algorithms out there, such as Caffe, Keras, and Tensorflow (which has become more user-friendly and better integrated with numerous systems programming languages and frameworks). This trend will continue, with several tested and published DL APIs available for integration into application software of various kinds.
  3. API based data product deployment: Data science operationalization has begun to happen through APIs and platforms. Organizations that are developing data product strategies are increasingly considering platform views and integrating APIs for managing data, or for scoring incoming data based on machine learning models. With the availability of such APIs for general use, it has become possible to integrate many such microservice APIs to build data products with very specific and diverse capabilities.
  4. A focus on value from data: Companies are looking past the big data hype more often these days, and are looking at what value they can get from the data. They’re focusing on better data collection and measurement processes, improved instrumentation and qualifying their data management infrastructure investments. They’re also seeking to enable their data science teams with the right approaches, tools and methods, so that they can get from data to insight faster. Several startups are also doing pioneering work in governing the data science process, by integrating principles of agility, continuous integration and continuous deployment into software solutions developed by data science teams.
  5. Automated data science and machine learning: Finally (and in many ways, most importantly), automated data science and machine learning is a relatively new area of work which is gaining ground significantly. Numerous startups and established organizations are evaluating methods to automate key parts of the data science workflow itself, with The Data Team among them. Such automation of data science is a trend that I foresee will gain ground for some more time, before it becomes an integral part of many data science workflows, and development approaches. While a number of applications that straddle this space are referred to as AI, the word is out on what AI is, and what isn’t, as far as me and many of my colleagues are concerned.

These are just some of the trends I’ve observed, of course, and from where you are, as a data scientist, you may be seeing much more. One thing is for sure – those who continue to keep their knowledge and skills relevant in this fast-changing space will continue to be rewarded with interesting work and new opportunity.